Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Buildings ; 13(5), 2023.
Article in English | Scopus | ID: covidwho-20245006

ABSTRACT

With frequent outbreaks of COVID-19, the rapid and effective construction of large-space buildings into Fangcang shelter hospitals has gradually become one of the effective means to control the epidemic. Reasonable design of the ventilation system of the Fangcang shelter hospital can optimize the indoor airflow organization, so that the internal environment can meet the comfort of patients and at the same time can effectively discharge pollutants, which is particularly important for the establishment of the Fangcang shelter hospital. In this paper, through the reconstruction of a large-space gymnasium, CFD software is used to simulate the living environment and pollutant emission efficiency of the reconstructed Fangcang shelter hospital in summer under different air supply temperatures, air supply heights and exhaust air volume parameters. The results show that when the air supply parameters are set to an air supply height of 4.5 m, an air supply temperature of 18 °C, and an exhaust air volume of a single bed of 150 m3/h, the thermal comfort can reach level I, and the ventilation efficiency for pollutants can reach 69.6%. In addition, the ventilation efficiency is 70.1% and 70.3% when the exhaust air volume of a single bed is continuously increased to 200 and 250 m3/h, which can no longer effectively improve the pollutant emission and will cause an uncomfortable blowing feeling to patients. © 2023 by the authors.

2.
Jurnal Kejuruteraan ; 35(3):567-576, 2023.
Article in English | Web of Science | ID: covidwho-20239915

ABSTRACT

The discovery of the Covid-19 virus in China at the end of 2019 has drastically altered the global landscape. The virus, which has now become a pandemic, has wrought devastation on the world, infecting over 500 million people and killing over 6 million. The virus's mutation into a few variations, however, has enabled the world's alarming situation to continue until now. Airborne particles and viruses including the new Covid-19 variant -Omricon, is not only extremely contagious but also can be transferred by airborne transmission, putting vulnerable people like children at risk, particularly in classrooms. Amongst the strategies to control airborne transmission of viruses and to improve indoor thermal and air quality is using ventilation strategies -such as dynamic insulation. Thus, this paper will review at how dynamic insulation systems in conventional farming and residential buildings, cleanrooms and other controlled environments work to reduce airborne viruses and particles in a room. An innovative "Airhouse" concept that combines with activated carbon has been researched and investigated with regard to the dynamic insulation systems.This system has a high potential to reduce the air temperature, humidity, and airborne viruses including Covid-19 whilst maintaining a steady airflow rate in a normal room. Therefore, it has a great deal of potential to decrease or eliminate concerns about the transmission of airborne viruses and adapt ventilation systems to new pandemic threats.

3.
Applied Sciences ; 13(11):6744, 2023.
Article in English | ProQuest Central | ID: covidwho-20236163

ABSTRACT

Amid concerns over airflow-induced transmission of the COVID-19 virus in buildings frequented by large numbers of people, such as offices, the necessity for radiant ceiling heating panels has increased. This is due to the concern that the airflows emitted from the convection heating systems installed near the ceiling or windows for winter heating may be a major cause of COVID-19 transmission. In this study, we aim to evaluate thermal comfort under various indoor and outdoor environmental conditions of a building and present the thermal output conditions of the radiant ceiling heating panel that can replace the convection heating system while ensuring comfort in the perimeter zone and handling the heating load. As a result, we were able to present, in a chart format, the thermal output conditions that can secure thermal comfort by analyzing the indoor airflow distribution depending on the surface temperature of the radiant ceiling heating panel, the interior surface temperature of the window, and the influence of internal heat generation. Moreover, through derived empirical formulas, we were able to determine the heating conditions of the panel that can secure the necessary heat dissipation while minimizing discomfort, such as downdrafts, even for indoor and outdoor conditions that were not evaluated in this study.

4.
Buildings ; 13(4), 2023.
Article in English | Web of Science | ID: covidwho-2327976

ABSTRACT

Custom-built solutions for ageing, urban regeneration, energy efficiency, thermal performance, and well-being are contemporary challenges that have prompted considerable research over the past decades. In the construction field, subjects such as energy efficiency and thermal performance are often addressed within the scope of mandatory regulations, the suitability of construction solutions and the incorporation of technical equipment. Considering four residential structures for older adults under construction in Portugal, this paper aims to highlight the importance of a comprehensive approach to these issues, including architectural quality as the main target. In pursuit of this, a cohesive set of intervention principles guided the analysis: the adaptive reuse of raw materials;taking advantage of the site's conditions;vegetation (type and location);construction options and durability;solar exposure and shading;the pedagogy of building use;and the comfort and thermal perception. Several reflections emerge from the analysis: good architectural design must consider dynamic models incorporating each context and the site's conditions;the culture of use and maintenance and the notion of "adaptive comfort" are primary factors to enhance thermal performance and energy efficiency;and each building is a unique result of a complex negotiation process. Bridging research through practice, and multidisciplinary scientific integration enable engagement with reality and raise awareness of the constraints and challenges to innovation in LTC design.

5.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2322568

ABSTRACT

In recent work, a Hierarchical Bayesian model was developed to predict occupants' thermal comfort as a function of thermal indoor environmental conditions and indoor CO2 concentrations. The model was trained on two large IEQ field datasets consisting of physical and subjective measurements of IEQ collected from over 900 workstations in 14 buildings across Canada and the US. Posterior results revealed that including measurements of CO2 in thermal comfort modelling credibly increases the prediction accuracy of thermal comfort and in a manner that can support future thermal comfort prediction. In this paper, the predictive model of thermal comfort is integrated into a building energy model (BEM) that simulates an open-concept mechanically-ventilated office space located in Vancouver. The model predicts occupants' thermal satisfaction and heating energy consumption as a function of setpoint thermal conditions and indoor CO2 concentrations such that, for the same thermal comfort level, higher air changes per hour can be achieved by pumping a higher amount of less-conditioned fresh air. The results show that it is possible to reduce the energy demand of increasing fresh air ventilation rates in winter by decreasing indoor air temperature setpoints in a way that does not affect perceived thermal satisfaction. This paper presents a solution for building managers that have been under pressure to increase current ventilation rates during the COVID-19 pandemic. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

6.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2324946

ABSTRACT

This paper describes the adaptation of an open-source ecological momentary assessment smartwatch platform with three sets of micro-survey wellness-related questions focused on i) infectious disease (COVID-19) risk perception, ii) privacy and distraction in an office context, and iii) triggers of various movement-related behaviors in buildings. This platform was previously used to collect data for thermal comfort, and this work extends its use to other domains. Several research participants took part in a proof-of-concept experiment by wearing a smartwatch to collect their micro-survey question preferences and perception responses for two of the question sets. Participants were also asked to install an indoor localization app on their phone to detect where precisely in the building they completed the survey. The experiment identified occupant information such as the tendencies for the research participants to prefer privacy in certain spaces and the difference between infectious disease risk perception in naturally versus mechanically ventilated spaces. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

7.
Sustainability ; 15(9):7333, 2023.
Article in English | ProQuest Central | ID: covidwho-2319001

ABSTRACT

Stressors are especially widespread in urban agglomerations. Common themes of built environment interventions that support health and well-being are blue and green infrastructure, indoor and outdoor air quality, thermal comfort, access to natural lighting, and acoustics. Given the current megatrends of increasing summer temperatures and the high popularity of home offices, we aimed at modeling thermal comfort changes of people working at home in three Austrian cities (Vienna, Innsbruck, and Graz) during the next decades until 2090. We present findings based on (I) an inter-disciplinary literature search and (II) indoor and outdoor climate simulations for actual and future climate scenarios. Based on the results, we discuss the potential impacts for work and human health and well-being, and we suggest a framework for the home office in "post-COVID-19 Austria” that integrates social, ecological, and economic aspects. The results of our study indicate that, in future climate scenarios, overheating of the interior can no longer be prevented without active cooling measures and nature-based solutions. Recommendations on the adjustment of behavior under climate change, including greening, adequate ventilation, and cooling techniques, are thus urgently needed for employees who are working from home in order to maintain physical and mental health and wellbeing.

8.
Production Engineering Archives ; 29(2):140-146, 2023.
Article in English | Scopus | ID: covidwho-2314033

ABSTRACT

People's ever-increasing needs encourage designers of various vehicles to search for solutions that will provide the most comfortable internal environment conditions. Currently, partly due to the COVID-19 threat, many people use their individual cars to travel to work, college, shops, trips, and holidays. Proper internal air parameters that need to be maintained in vehicles are critical in the summer. The article discusses the thermal comfort of four passengers of a modern car produced in 2017 to verify if contemporary production technology can successfully meet the thermal needs of people under actual conditions in the Polish climate. For this purpose, five temperature values were tested: 20°C, 22°C, 24°C, 26°C, and 28°C for the car located in the shade and sun. In addition, the Testo 400 meter was used to control and measure the internal parameters, and questionnaires were used to find out about the thermal impressions of the respondents. The research was carried out in July when the air temperature in Poland was high. © 2023 Luiza Dȩbska et al., published by Sciendo.

9.
Front Public Health ; 11: 1166056, 2023.
Article in English | MEDLINE | ID: covidwho-2320931

ABSTRACT

Since the advent of coronavirus disease 2019 (COVID-19), healthcare workers (HCWs) wearing personal protective equipment (PPE) has become a common phenomenon. COVID-19 outbreaks overlap with heat waves, and healthcare workers must unfortunately wear PPE during hot weather and experience excessive heat stress. Healthcare workers are at risk of developing heat-related health problems during hot periods in South China. The investigation of thermal response to heat stress among HCWs when they do not wear PPE and when they finish work wearing PPE, and the impact of PPE use on HCWs' physical health were conducted. The field survey were conducted in Guangzhou, including 11 districts. In this survey, HCWs were invited to answer a questionnaire about their heat perception in the thermal environment around them. Most HCWs experienced discomfort in their back, head, face, etc., and nearly 80% of HCWs experienced "profuse sweating." Up to 96.81% of HCWs felt "hot" or "very hot." The air temperature had a significant impact on thermal comfort. Healthcare workers' whole thermal sensation and local thermal sensation were increased significantly by wearing PPE and their thermal sensation vote (TSV) tended towards "very hot." The adaptive ability of the healthcare workers would decreased while wearing PPE. In addition, the accept range of the air temperature (T a) were determined in this investigation. Graphical Abstract.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Personal Protective Equipment , Health Personnel , Temperature , Heat-Shock Response
10.
Frontiers of Engineering Management ; 2023.
Article in English | Web of Science | ID: covidwho-2307722

ABSTRACT

Indoor environment has significant impacts on human health as people spend 90% of their time indoors. The COVID-19 pandemic and the increased public health awareness have further elevated the urgency for cultivating and maintaining a healthy indoor environment. The advancement in emerging digital twin technologies including building information modeling (BIM), Internet of Things (IoT), data analytics, and smart control have led to new opportunities for building design and operation. Despite the numerous studies on developing methods for creating digital twins and enabling new functionalities and services in smart building management, very few have focused on the health of indoor environment. There is a critical need for understanding and envisaging how digital twin paradigms can be geared towards healthy indoor environment. Therefore, this study reviews the techniques for developing digital twins and discusses how the techniques can be customized to contribute to public health. Specifically, the current applications of BIM, IoT sensing, data analytics, and smart building control technologies for building digital twins are reviewed, and the knowledge gaps and limitations are discussed to guide future research for improving environmental and occupant health. Moreover, this paper elaborates a vision for future research on integrated digital twins for a healthy indoor environment with special considerations of the above four emerging techniques and issues. This review contributes to the body of knowledge by advocating for the consideration of health in digital twin modeling and smart building services and presenting the research roadmap for digital twin-enabled healthy indoor environment.

11.
Science Talks ; : 100241, 2023.
Article in English | ScienceDirect | ID: covidwho-2307273

ABSTRACT

SARS-COV-2 focuses on the comfort of outdoor spaces in large cities. Creating comfortable spaces for children and improving the habitability of cities are essential today. Climate change is real, and its main adverse effects are already being felt: Urban Heat Island and recurring heat waves. Numerous comfort models predict the state of the occupants of space. However, these comfort indices need to be validated in Mediterranean climates. This study tests the COMFA comfort model in a real case in Seville. Thermal monitoring campaigns are carried out during the intermediate seasons of warm weather in a primary school. The main objective is to know the effect of the urban heat island and the climatic conditions to which the person is subjected. For this purpose, fixed, semi-mobile, and mobile sensors were used to carry out surveys. Theoretical predictions provided by the COMFA thermal comfort model were compared with the subjective responses of the occupants. 65% of the model's results predict what people feel and tend to overestimate the real thermal perception, especially in warm climates such as Seville. These results can be helpful to redefine thermal comfort for climate change mitigation solutions assessment in public spaces.

12.
Sustainability ; 15(6), 2023.
Article in English | Web of Science | ID: covidwho-2311783

ABSTRACT

The current climate emergency concerns and the COVID-19 pandemic demand urgent action to maintain healthy indoor environments in energy efficient ways. Promoting good indoor environments, in particular, increasing ventilation levels, has been a prominent strategy to mitigate the risk of COVID-19 transmission indoors. However, this strategy could be detrimental to thermal comfort, particularly during the heating season in buildings located in temperate climate zones. This paper presents research conducted in two primary schools in South Wales (UK) where the temperature, relative humidity and the carbon dioxide (CO2) concentration levels were monitored. The study monitored six classrooms and two communal spaces in the two schools during the academic year 2021/2022, the first academic year back to teaching and learning in school buildings after home-schooling and educational disruptions due to COVID-19 lockdowns. The study investigated the actions taken by teachers and pupils to balance the thermal comfort needs while minimising CO2 concentration levels. We conducted user studies to explore the comfort perceptions by pupils and teachers in relation to the thermal conditions and the freshness of air in the monitored classrooms. The paper identifies opportunities where end-users, teachers and pupils engaged with the management of the indoor environmental conditions and adopted actions to balance the requirement of reducing CO2 concentration levels while promoting thermal comfort. This research offers lessons and insights related to end-users' agency and their understanding of indoor environments and thermal experience in schools.

13.
Journal of Engineering Design and Technology ; 21(2):619-634, 2023.
Article in English | Web of Science | ID: covidwho-2309904

ABSTRACT

Purpose - The present shift and change in the human lifestyle across the world are undeniable. Currently, individuals spend a substantial amount of time indoors due to the global COVID-19 pandemic that strikes the entire world. This change in human lifestyle has devastating effects on human health and productivity. As a result, the influence of indoor environmental quality (IEQ) on the health and productivity of building users becomes a critical field of research that requires immediate attention. As a result, the purpose of this study is to review the state-of-the-art literature by establishing a connection between the factors that influence health and productivity in any given indoor environment.Design/methodology/approach - The methodology involves a thorough review of selected published journals from 1983 to 2021, and the result was analysed through content analysis. The search included journal articles, books and conference proceedings on the critical factors influencing IEQ and their impact on building occupants, which was sourced from different databases such as ScienceDirect, Taylor, GoogleScholar and Web of Science.Findings - The findings from the 90 selected articles revealed four critical factors influencing the quality of the indoor environment and are categorised into;indoor air quality, indoor thermal comfort, visual comfort and acoustic comfort. The findings suggested that when developing a system for controlling the quality of the indoor environment, the indoor air quality, indoor thermal comfort, visual comfort and acoustic comfort should be taken into account.Originality/value - The indoor environment deeply impacts the health of individuals in their living and work environments. Industry must have a moral responsibility to provide health facilities in which people and workers feel satisfies and give conditions for prosperity. Addressing these essential aspects will not only help the decision-making process of construction professionals but also encourages innovative construction techniques that will enhance the satisfaction, wellness and performance of building occupants.

14.
Journal of Building Engineering ; 71, 2023.
Article in English | Scopus | ID: covidwho-2291734

ABSTRACT

Addressing indoor air quality (IAQ) and thermal comfort issues in school buildings is challenging but relevant. Firstly, their primary occupants are more vulnerable than adults. Secondly, school buildings are often inadequate being too old or designed to prioritise energy-efficiency targets. Thirdly, occupants have often little control over the indoor environmental quality (IEQ). Lastly, the SARS-CoV-2 pandemic highlighted the complexity and vulnerability of existing decision-making processes in relation to making timely and well-informed decisions about IEQ threats. Standards and guidelines vary over time and among similar countries despite targeting similar occupants, evaluate IAQ and thermal comfort independently, and do not include any specific adaptations to children. Thus, the aim of this research is to compare different available standards to evaluate IAQ and thermal comfort in school buildings. By analysing with different standards (EN16798, BB101, and ASHRAE 55 and 62.1) the data collected in schools in northern Italy, this research evaluated the consequences of different limits and approaches, and proposed improvements. The conclusions are that (i) thresholds and methods inconsistency within the same standard should be avoided;(ii) upper- and lower-bounded operative temperature scales are the most appropriate means to design and verify thermal comfort in classrooms;(iii) IAQ metrics that give an upper limit per a certain amount of consecutive time might prevent the build-up of indoor pollutants, even with high emissions from the building fabric;(iv) no standard proposes a combined IAQ and thermal comfort analysis which could enable more informed trade-off decisions considering IAQ, thermal comfort, and energy targets. © 2023 The Authors

15.
Buildings ; 13(4):1103, 2023.
Article in English | ProQuest Central | ID: covidwho-2305274

ABSTRACT

This study aims to propose building envelope retrofit packages for existing naturally ventilated school buildings in the hot–humid climatic region of Chennai, India. Indoor thermal parameters were collected through field studies from nine sample classrooms of a selected school building in May 2019, between 9.00 am and 4.00 pm. The thermal performance assessment of the existing building was performed by examining the discomfort hours using the CBE thermal comfort tool. Envelope retrofit strategies gathered from the literature and building standards were applied and studied through simulation. The findings reveal the enormous potential to increase the thermal comfort of existing school buildings through envelope retrofit measures. The results demonstrate that the whole-building temperature can be reduced up to 3.2 °C in summer and up to 3.4 °C in winter. Implementing retrofit measures to the building envelopes of existing buildings will help school owners to increase the comfortable hours of whole buildings by up to 17%. In comparison, annual energy savings of up to 13% for the whole building can be made by enhancing the thermal performance of the building envelope. The findings will also help architects to optimise thermal performance and energy usage with minimal interventions.

16.
Sustainability ; 15(7):5831, 2023.
Article in English | ProQuest Central | ID: covidwho-2298834

ABSTRACT

As a riveting example of social housing in Brazil, the Minha Casa Minha Vida program was set in 2009 to diminish the 6-million-home housing deficit by offering affordable dwellings for low-income families. However, recurrent thermal discomfort complaints occur among dwellers, especially in the Baltimore Residential sample in Uberlândia City. To avoid negative effects of energy poverty, such as family budget constraints from the purchase of electric appliances and extra costs from power consumption, a simulation based on system dynamics modeling shows a natural ventilation strategy with a mixed combination of sustainable and energy-efficient materials (tilting window with up to 100% opening, green tempered glass, and expanded polystyrene wall) to observe the internal room temperature variation over time. With a 50% window opening ratio combined with a 3 mm regular glass window and a 12.5 cm rectangular 8-hole brick wall, this scenario presents the highest internal room temperature value held during the entire period. From the worst to the best-case scenario, a substantial reduction in the peak temperature was observed from window size variation, demonstrating that natural ventilation and constructive elements of low complexity and wide availability in the market contribute to the thermal comfort of residential rooms.

17.
Comput Part Mech ; : 1-14, 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2301302

ABSTRACT

Respiratory infections such as COVID-19 can be spread by respiratory droplets with a diameter larger than 5-10 µ m or by droplet nuclei with a diameter smaller than 5 µ m . Besides wearing masks, fresh air should be supplied frequently in closed rooms to avoid infections. Constructing and operating new isolation rooms require time, money, and maintenance cost, which are scarce in the current pandemic and in many communities. Displacement ventilation may be a feasible and secure option in temporary hospitals and other buildings to control the disease. This paper investigates using CFD simulations how displacement ventilation systems can deliver high air quality, and thermal comfort and minimize the risk of COVID-19 infection in enclosed spaces.

18.
Urban Forestry and Urban Greening ; 82, 2023.
Article in English | Scopus | ID: covidwho-2275424

ABSTRACT

Lack of thermal comfort in the existing building stock in many warm summer climates and the COVID-19 pandemic have increased residents' temporary occupation of urban open spaces. However, climate change and other effects such as urban heat islands are also negatively affecting the livability of these spaces. Therefore, strategies are needed to improve the thermal conditions in these areas. In this context, the research designs, simulates and assesses an urban green infrastructure supported by an adaptative solar shading system. For this purpose, a public square to be renovated in Seville (Spain) is chosen. After an analysis of the current situation, more vegetation is added. However, trees are not planted fully grown, so their cover is not enough in the short term and an artificial system that protects from the sun by casting shade and that adapts to both their growth and the seasons is included. The urban space is characterized by on-site measurements, proposing four (initial, intermediates and final) scenarios using computational fluid dynamics simulations in an holistic microclimate modelling system. In turn, changes in thermal comfort are analyzed using the COMFA model. Results show that the air and surface temperature are decreased, reducing the number of hours in discomfort by 21% thanks to incorporating the green structure and by 30% due to the vegetation. It can be concluded that the use of these temporary urban prostheses enables urban spaces regenerated with vegetation to be enjoyed without waiting 20 or 30 years for the trees to mature, encouraging people to spend more time outdoors from the start of the intervention. © 2023 The Authors

19.
Thermal Science ; 27(1):797-809, 2023.
Article in English | Scopus | ID: covidwho-2272159

ABSTRACT

An emergency caused by the COVID-19 pandemic affected the rethinking of existing healthcare systems. The increased need for hospital beds appeared short after the outbreak of the pandemic and the solution was to adapt the existing buildings, primarily public ones. Among all, sports buildings, i.e. sports halls were successfully used around the globe for conversion into hospitals. Topic of the paper was to investigate whether sports halls in Serbia, which were also used as temporary hospitals, are suitable for conversion in terms of energy consumption needed for achieving thermal comfort. Two case studies were analysed. The energy simulations were done using the DesingBuilder software. The results of thermal comfort summary and energy consumption led to the conclusion that this building type in Serbia could be successfully used for hospital purposes. Although the multiple increase in energy consumption was noted during the heating period, the results were within the limits required by both national and international standards. © 2023 Society of Thermal Engineers of Serbia Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions

20.
ASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022 ; 6, 2022.
Article in English | Scopus | ID: covidwho-2266889

ABSTRACT

The energy consumption of Heating Ventilation and Air Conditioning (HVAC) systems accounts for a large proportion of global energy usage so even a small percentage of energy savings in these systems will account for important absolute value savings. One such saving can be realized by better designs as well as optimizing existing air distribution system. The indoor air quality (IAQ) is also greatly impacted by the air distribution system. In this work, the task of optimizing both the placement and the design of diffusers is investigated so acceptable Air Changes per Hour (ACH) numbers are attained with less energy consumption and good thermal comfort. The ANSYS Fluent software was used to optimize the design and placement of a newly developed diffuser. The proposed air distribution system is design to produce conditions like what one would experience while standing outside in a small breeze while experiencing perfect weather (room temperature, uniform air temperature distribution, air speed less than 2 m/s) [1]). This work is an extension of a previous study where a new diffuser design was proposed, which takes advantage of the Coanda effect [2]. The numerical analysis includes realistic models of a 9 × 9 × 3 m (width × length × height) classroom, which is occupied by students and a teacher. To be more realistic, it includes furniture, a door and windows. The simulated Heating Ventilation and Air Conditioning (HVAC) system complies with ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) standards for acceptable air quality. This investigation proposes a template on how anyone can optimize the location and placement of the air diffusers while achieving both thermal comfort and good IAQ. While this work was inspired by the COVID-19 pandemic this is foreseen to be an important ongoing issue and could lead to future advances in HAVC system that improve IAQ and produce better thermal comfort with improved energy savings. Copyright © 2022 by ASME.

SELECTION OF CITATIONS
SEARCH DETAIL